

1 High secondary formation of nitrogen-containing organics (NOCs) and its

2 possible link to oxidized organics and ammonium

- 3 Guohua Zhang¹, Xiufeng Lian^{1,2}, Yuzhen Fu^{1,2}, Qinhao Lin¹, Lei Li³, Wei Song¹, Zhanyong
- 4 Wang⁴, Mingjin Tang¹, Duohong Chen⁵, Xinhui Bi^{1,*}, Xinming Wang¹, Guoying Sheng¹
- 5
- 6 ¹ State Key Laboratory of Organic Geochemistry and Guangdong Key Laboratory of
- 7 Environmental Resources Utilization and Protection, Guangzhou Institute of Geochemistry,
- 8 Chinese Academy of Sciences, Guangzhou 510640, PR China
- 9 ² University of Chinese Academy of Sciences, Beijing 100039, PR China
- 10 ³ Institute of Mass Spectrometer and Atmospheric Environment, Jinan University, Guangzhou
- 11 510632, PR China
- ⁴ School of Intelligent Systems Engineering, Sun Yat-sen University, Shenzhen 518107, PR
- 13 China
- 14 ⁵ State Environmental Protection Key Laboratory of Regional Air Quality Monitoring,
- 15 Guangdong Environmental Monitoring Center, Guangzhou 510308, PR China
- 16
- 17 Correspondence to: Xinhui Bi (bixh@gig.ac.cn)

19 Highlights

- Nitrogen-containing organics (NOCs) were highly internally mixed with photochemically
- 21 produced secondary oxidized organics
- More than 50% of NOCs were well predicted by secondary formation from these
- 23 oxidized organics and ammonium
- Higher relative humidity and particle acidity facilitated the formation of NOCs

25 Abstract

26	Nitrogen-containing organic compounds (NOCs) substantially contribute to light
27	absorbing organic aerosols, although the atmospheric processes responsible for the secondary
28	formation of these compounds are poorly understood. In this study, seasonal atmospheric
29	processing of NOCs were investigated by single particle mass spectrometry in urban
30	Guangzhou from 2013-2014. The relative abundance of NOCs was found to be strongly
31	enhanced by internal mixing with the photochemically produced secondary oxidized organics
32	(such as formate, acetate, pyruvate, methylglyoxal, glyoxylate, oxalate, malonate and
33	succinate). Furthermore, the co-occurrence of NOCs with ammonium was also observed.
34	Interestingly, the relative abundance of NOCs was inversely correlated with ammonium, while
35	their number fractions were positively correlated. Multiple linear regression analysis and
36	positive matrix factorization analysis were performed to predict the relative abundance of NOCs
37	generated from oxidized organics and ammonium. Both results showed close associations (R^2 >
38	0.7, $p < 0.01$) between the predicted NOCs and the observed values. Increased humidity and
39	higher particle acidity were found to promote the production of NOCs. Higher relative
40	contributions of NOCs were observed in summer and autumn, in comparison to spring and
41	winter, due to the relatively higher contribution of oxidized organics and NH_3/NH_4^+ in summer
42	and autumn periods. To the best of our knowledge, this is the first direct field observation study
43	establishing a close association between NOCs and both oxidized organics and ammonium.
44	These findings have substantial implications on the role of ammonium in the atmosphere,
45	particularly in models predicting the evolution and deposition of NOCs.

- 47 Keywords: nitrogen-containing organic compounds, individual particles, oxidized organics,
- 48 ammonium, mixing state, single particle mass spectrometry

49

50 1 Introduction

51 Organic aerosols that strongly absorb solar radiation are referred to as brown carbon 52 (BrC), capable of a comparable level of light absorption in the spectral range of near-53 ultraviolet (UV) light as black carbon (Andreae and Gelencser, 2006; Feng et al., 2013; Yan 54 et al., 2018). Nitrogen-containing organic compounds (NOCs) represent a large and 55 complicate fraction of atmospheric aerosols, significantly contributing to the pool of BrC (Feng et al., 2013; Mohr et al., 2013; Li et al., 2019). Furthermore, NOCs have a major effect 56 57 on atmospheric chemistry, human health and climate forcing (Noziere et al., 2015; 58 Kanakidou et al., 2005; Shrivastava et al., 2017; De Gouw and Jimenez, 2009). The nitrogen 59 component of NOCs accounts for a large fraction of total airborne nitrogen ($\sim 30\%$), although 60 the proportion exhibits a high level of variability temporally and spatially and therefore has 61 an influence on both regional and global N deposition (Neff et al., 2002; Shi et al., 2010; 62 Cape et al., 2011). However, the sources, evolution and optical properties of NOCs remain 63 unclear and contribute significantly to uncertainties in the estimation of their impacts on the 64 environment and climate (Laskin et al., 2015; Feng et al., 2013). 65 NOCs are ubiquitous components of atmospheric aerosols, cloud water and rainwater

(Altieri et al., 2009; Desyaterik et al., 2013; Laskin et al., 2015), spanning a wide range of
molecular weights, structures and light absorption properties (Lin et al., 2016). Emissions of
primary NOCs have been attributed to biomass burning, coal combustion, vehicle emissions,
biogenic production and soil dust (Laskin et al., 2009; Desyaterik et al., 2013; Sun et al.,

70	2017; Mace et al., 2003; Rastogi et al., 2011; Wang et al., 2017). Growing evidence from
71	laboratory studies suggest that the production pathways for secondary NOCs in gas phase,
72	aerosol, and clouds. Maillard reactions involving mixtures of atmospheric aldehydes (e.g.,
73	methylglyoxal/glyoxal) and ammonium/amines are of particular interests (e.g., Hawkins et
74	al., 2016; De Haan et al., 2017; De Haan et al., 2011). Similarly, a significant portion of
75	NOCs may also be derived from the heterogeneous ageing of secondary organic aerosol
76	(SOA) with NH_3 / NH_4^+ (Liu et al., 2015; Laskin et al., 2015). Mang et al. (2008) proposed
77	that even trace levels of ammonia may be sufficient to form NOCs via this pathway. In
78	addition, gas phase formation of NOCs through interaction between volatile organic
79	hydrocarbons and $NO_{\boldsymbol{x}}$ and other oxidations, followed by condensation may also have
80	potential contribution (Fry et al., 2014; Stefenelli et al., 2019; Lehtipalo et al., 2018).
81	The secondary formation of NOCs is especially prevalent in environments experiencing
82	high anthropogenic emissions (Yu et al., 2017; Ho et al., 2015), although further studies are
82 83	high anthropogenic emissions (Yu et al., 2017; Ho et al., 2015), although further studies are required to comprehensively establish the formation mechanisms. A major obstacle is that
83	required to comprehensively establish the formation mechanisms. A major obstacle is that
83 84	required to comprehensively establish the formation mechanisms. A major obstacle is that organic and inorganic matrix effects have a profound impact on the chemistry of organic
83 84 85	required to comprehensively establish the formation mechanisms. A major obstacle is that organic and inorganic matrix effects have a profound impact on the chemistry of organic compounds in bulk aqueous particles and particles undergoing drying (El-Sayed et al., 2015;
83 84 85 86	required to comprehensively establish the formation mechanisms. A major obstacle is that organic and inorganic matrix effects have a profound impact on the chemistry of organic compounds in bulk aqueous particles and particles undergoing drying (El-Sayed et al., 2015; Lee et al., 2013). While real-time characterization studies remain a challenge due to the

90 al. (2010) observed that the widespread occurrence of NOCs was closely correlated with

91	particle acidity in the atmosphere of Shanghai (China). In addition, real-time measurements
92	of the atmosphere in New York (US) by aerosol mass spectrometry, indicated a positive link
93	between the age of organic species and the N/C ratio (Sun et al., 2011). Further in-depth
94	studies are required to identify the role of formation conditions (e.g., relative humidity (RH)
95	and pH) for secondary NOCs (Aiona et al., 2017; Nguyen et al., 2012). In present study, the
96	mixing state of individual particles were investigated, involving NOCs, oxidized organics
97	and ammonium, based on in-line seasonal observations using single particle aerosol mass
98	spectrometry (SPAMS). These findings show that the formation of NOCs was significantly
99	linked to oxidized organics and $\mathrm{NH}_4^{\scriptscriptstyle +}$, which ought to have important environmental
100	implications for the impact and fate of these compounds.

101

102 **2 Methods**

103 2.1 Field measurements

104 Sampling was performed at the Guangzhou Institute of Geochemistry, a representative 105 urban site in Guangzhou (China), a megacity in the Pearl River Delta (PRD) region. SPAMS 106 analysis was performed (Hexin Analytical Instrument Co., Ltd., China) to establish the size 107 and chemical composition of individual particles in real-time (Li et al., 2011). The sampling 108 inlet for aerosol characterization was situated 40 meters above the ground level. A brief 109 description of the performance of SPAMS and other instruments can be found in the 110 Supporting Information. The sampling periods covered four seasons including spring (21/02 111 to 11/04 2014), summer (13/06 to 16/07 2013), autumn (26/09 to 19/10 2013) and winter

- (15/12 to 25/12 2013). The total measured particle numbers and mean values for
 meteorological data and gaseous pollutants, are outlined for each season in Table S1 and
 were described in a previous publication (Zhang et al., 2019).
- 115
- 116 2.2 SPAMS data analysis
- 117 Fragments of NOCs were identified according to detection of ion peaks at m/z -26 [CN]⁻ 118 or -42 [CNO], generally due to the presence of C-N bonds (Silva and Prather, 2000; 119 Zawadowicz et al., 2017; Pagels et al., 2013). Thus, the NOCs herein may refer to complex nitrated organics such as organic nitrates, nitro-aromatics, nitrogen heterocycles and 120 121 polyphenols. The bulk solution-phase reaction between the representative oxidized organics 122 (i.e., methylglyoxal) and ammonium sulfate was also performed in the laboratory to confirm 123 that the formation of C-N bonds would generate ion peaks at m/z -26 [CN]⁻ and/or -42 124 [CNO]⁻ using SPAMS (Fig. S1). The number fractions (Nfs) of particles that contained 125 NOCs ranged from 56-59% across all four seasons (Table S1). The number of detected 126 NOCs-containing particles and their vacuum aerodynamic diameter (d_{va}) are shown in Fig. 127 S2. Most of the detected NOC-containing particles had a d_{va} in a range of 300-1200 nm. 128 A representative mass spectrum for NOCs-containing particles is shown in Fig. 1. 129 Dominant peaks in the mass spectrum were 39 [K]⁺, 23 [Na]⁺, nitrate (-62 [NO₃]⁻ or -46 130 $[NO_2]^-$), sulfate (-97 $[HSO_4]^-$), organics (27 $[C_2H_3]^+$, 63 $[C_5H_3]^+$, -42 $[CNO]^-$, -26 $[CN]^-$), 131 ammonium (18 [NH₄]⁺) and carbon ion clusters ($C_n^{+/-}$, n = 1, 2, 3,...). NOCs-containing 132 particles were internally mixed with various oxidized organics, represented as formate at m/z

133	-45 [HCO ₂] ⁻ , acetate at m/z -59 [CH ₃ CO ₂] ⁻ , methylglyoxal at m/z -71 [C ₃ H ₃ O ₂] ⁻ , glyoxylate
134	at m/z -73 [C ₂ HO ₃] ⁻ , pyruvate at m/z -87 [C ₃ H ₃ O ₃] ⁻ , malonate at m/z -103 [C ₃ H ₃ O ₄] ⁻ and
135	succinate at m/z -117 $[C_4H_5O_4]^-$ (Zhang et al., 2017; Zauscher et al., 2013; Lee et al., 2003).
136	The contribution of these ion peaks to the formation of secondary oxidized organics has been
137	previously confirmed based on their pronounced diurnal trends, with maximum
138	concentrations observed in the afternoon (Zhang et al., 2019). Furthermore, these oxidized
139	organics have been reported to be highly correlated (r = $0.72 - 0.94$, $p < 0.01$) with each other
140	(Zhang et al., 2019), consistent with the assumption that they are photochemical oxidation
141	products of various volatile organic compounds (VOCs) (Paulot et al., 2011; Zhao et al.,
142	2012; Ho et al., 2011). More information on the seasonal variation range of the Nfs of
143	oxidized organics, ammonium and NOCs can be found in Fig. S3.
144	Hourly mean Nfs and relative peak areas were applied herein to indicate the variations
145	of aerosol compositions in individual particles. Even though advances have been made in
146	the quantification of specific chemical species for individual particles based on their
147	respective peak area information, it is still quite a challenge for SPAMS to provide
148	quantitative information on aerosol components due to matrix effects, incomplete ionization
149	and so on (Qin et al., 2006; Jeong et al., 2011; Healy et al., 2013; Zhou et al., 2016). Despite
150	of this, the variation of relative peak area should be a good indicator for the investigation of
151	atmospheric processing of various species in individual particles (Wang et al., 2010;
152	Zauscher et al., 2013; Sullivan and Prather, 2007; Zhang et al., 2014).
152	

154 3 Results and Discussion

155 3.1 Evidence for the formation of NOCs from oxidized organics and ammonium

156 Figure 2 shows the seasonal variations in Nfs of the oxidized organics and ammonium, 157 which were internally mixed with NOCs. On average, more than 90% of the oxidized 158 organics and 65% of ammonium (except spring) were found to be internally mixed with 159 NOCs (Fig. S4). Based on the comparison of the Nfs of NOCs (~60%) relative to all the 160 measured particles, it may be concluded that NOCs were enhanced with the presence of 161 oxidized organics and ammonium, with the increase associated with oxidized organics being 162 most pronounced. A strong correlation between NOCs and oxidized organics further 163 demonstrates a close association between these factors, as shown in Fig. 3. Thus, the 164 dominant association between oxidized organics and NOCs (Fig. 2) indicates that NOCs 165 may be formed from the processing of secondary oxidized organics in particle phase, rather 166 than gas phase reactions followed by condensation. Water soluble organic nitrogen (WSON) 167 was reported to be positively correlated with some oxidation products in a forest in northern Japan (Miyazaki et al., 2014). A close correlation observed ($R^2 = 0.55$, p < 0.01) between 168 169 the temporal variation of NOCs internally and externally mixed with oxidized organics, 170 further indicates that NOCs-containing particles free of oxidized organics may also be 171 associated with the processing of these compounds (Fig. S5). This is further supported by 172 the similar pattern of diurnal variation observed for NOCs and oxidized organics (Fig. S6). 173 However, a slight lag period was observed in the overnight peaks of NOCs, as compared to 174 those of the oxidized organics. This finding was consistent with previously reported results,

175	showing NOCs to have concentration maxima overnight in Beijing and Uintah (Yuan et al.,
176	2016; Zhang et al., 2015). The lower contribution of NOCs during daytime may be partly
177	explained by the lower RH, as discussed in section 3.2, in addition to photo-bleaching which
178	occurs during daytime (Zhao et al., 2015).
179	A previously reported study effectively modelled predictions of the diurnal variation in
180	secondary NOCs, produced by mixed carbonyls and ammonium (Woo et al., 2013). In the
181	present study, the Nfs of ammonium-containing particles internally mixed with NOCs,
182	varied within a wider range (~40-90%) (Fig. 2), as compared to the variation in oxidized
183	organics. The enhanced mixing of NOCs with ammonium suggests that the uptake of gas
184	phase oxidized organics and their interaction with particulate ammonium might also
185	contribute to the formation of NOCs (Gen et al., 2018; De Haan et al., 2017). However, no
186	enhancement occurred during spring and the enhancement was limited in ammonium-
187	containing particles, as compared to oxidized organics-containing particles (Fig. 2). This
188	phenomenon may be attributed to the limited oxidized organics fraction during spring (<
189	20%), in comparison to other seasons (~40%) (Fig. S3). Interestingly, the relationship
190	between NOCs and ammonium was distinctly different from the relationship between NOCs
191	and oxidized organics. A positive correlation ($R^2 = 0.50$, $p < 0.01$) was observed between
192	the hourly detected number of NOCs and ammonium. In contrast, a negative correlation (\mathbb{R}^2
193	= 0.55, $p < 0.01$) was observed between the hourly average relative peak areas (RPAs) of
194	NOCs and ammonium (Fig. 3). These results imply that the controlling factors on the
195	formation of NOCs from ammonium are different from those controlling oxidized organics.

196	This may be due to the fact that the ammonium available to react with secondary oxidized
197	organics was from the uptake of ammonia, regarding that NOCs were mainly supplied by
198	heterogeneous reactions of oxidized organics, as discussed above. By this pathway, the
199	formation of ammonium and NOCs would compete for ammonia, potentially resulting in a
200	negative correlation between the RPAs of NOCs and ammonium as observed (Fig. 3). A
201	study shows that ammonia is more efficient at producing NOC than ammonium (Nguyen et
202	al., 2012). The negative correlation between concentrations of WSON and $\mathrm{NH}_4^{\scriptscriptstyle+}$ in filter
203	samples (Fig. S7), may serve as quantitative support for the close association between
204	WSON formation and $\mathrm{NH}_4^{\scriptscriptstyle +}$. Furthermore, the negative correlation between the RPA of
205	NOCs and ammonium, may indicate that the formation of NOCs is influenced by particle
206	acidity, which is directly affected by the abundance of ammonium (as discussed in section
207	3.3). Consistently, the Nfs of ammonium that internally mixed with NOCs were inversely
208	correlated with the RPAs of ammonium (Fig. S8).

209 As discussed, the formation of oxidized organics is mainly attributed to gas-phase 210 photochemical reactions followed by condensation. One may expect that NOCs were formed 211 through the interaction between NOx and oxidized organics in gas phase followed by 212 condensation (Fry et al., 2014; Stefenelli et al., 2019; Lehtipalo et al., 2018). However, low correlation coefficients ($R^2 = 0.02-0.13$) between NOCs and NOx indicates limited 213 214 contribution of this pathways to the observed NOCs. Also, NOCs formed through NOx and 215 oxidized organics followed by partitioning would not be dependent on the amount of 216 ammonium, which is incompatible with our results.

217	Multiple linear regression analysis was performed to predict the RPAs of NOCs
218	generated from oxidized organics and ammonium, showing a close association ($R^2 = 0.71$,
219	p < 0.01) between the predicted RPAs and the observed values of NOCs (Fig. 4). Therefore,
220	the interactions involving oxidized organics and ammonium may explain over half of the
221	observed variations in NOCs in the atmosphere of Guangzhou. A fraction of the unaccounted
222	NOCs could be due to primary emissions and other formation pathways. Consistent results
223	were also obtained from the PMF model analysis (Norris et al., 2009) (detailed information
224	is provided in the SI). Fig. 5 presents the PMF factor profiles and their diurnal variations.
225	Around 75% of NOCs could be well explained by two factors, with 33% of the modelled
226	NOCs mainly associated with ammonium and carbonaceous ion peaks (ammonium factor),
227	while 59% were mainly associated with oxidized organics (oxidized organics factor). The
228	ammonium factor showed a diurnal variation pattern peaking during early morning, which
229	is consistent with the diurnal variation in RH (Zhang et al., 2019). In addition, this factor
230	contributed to ~80% (Fig. S9) of the modelled NOCs during spring when the highest RH
231	was observed (Table S1), while the oxidized organics factor dominated in all other seasons.
232	This may indicate a potential role of aqueous pathways in the formation of NOCs,
233	particularly during spring. In contrast, the oxidized organics factor showed a pattern of
234	diurnal variation, increasing from morning hours and peaking overnight, which may
235	correspond to the photochemical production of oxidized organics and follow-up interaction
236	with condensed ammonium. This pathway may explain the slightly late peaking of NOCs
237	compared to oxidized organics, as condensation of ammonium is favorable overnight (Hu et

238	al., 2008). While there were similarities in the fractions of oxidized organics in the oxalate
239	factor and the oxidized organics factor, they only contributed to 8% of the modelled NOCs
240	in the oxalate factor, which contained ~80% of the modelled oxalate. As previously
241	discussed, these oxidized organics are also precursors for the formation of oxalate (Zhang et
242	al., 2019) and therefore, these results suggest that there were two competitive pathways for
243	the evolution of these oxidized organics. Some oxidized organics formed from
244	photochemical activities were further oxidized to oxalate, resulted in a diurnal pattern of
245	variation and concentration peaks during the afternoon (Fig. 5), while others interact with
246	ammonium to form NOCs. This However, the controlling factors for these pathways could
247	not be determined in the present study.
248	Several laboratory studies have confirmed the importance of ammonium in the
249	formation of NOCs from carbonyls in atmospheric aerosols (Sareen et al., 2010; Shapiro et

250 al., 2009; Noziere et al., 2009; Kampf et al., 2016; Galloway et al., 2009). Similarly, SOA 251 generated from a large group of biogenic and anthropogenic VOCs can be further aged by 252 NH₃/NH₄⁺ (Nguyen et al., 2012; Bones et al., 2010; Updyke et al., 2012; Liu et al., 2015; 253 Huang et al., 2017). In a chamber study, the formation of NOCs were found to be enhanced 254 in a NH₃-rich environment (Chu et al., 2016). While such chemical mechanisms might be 255 complex, the initial steps generally involve reactions forming imines and amines, which can 256 further react with carbonyl SOA compounds to form more complex products (e.g., 257 oligomers/BrC) (Laskin et al., 2015).

259 3.2 Seasonal variations in the observed NOCs

260	A clear seasonal variation in NOCs were also observed, with higher relative
261	contributions during summer and autumn (Figs. 3 and 4), mainly due to the variations in
262	oxidized organics and NH ₃ /NH ₄ ⁺ . As discussed in section 3.3, particle acidity was lower
263	during spring and winter than during summer and autumn, which may contribute to the
264	observed seasonal variations. In this region, a larger contribution from secondary oxidized
265	organics is typically observed during summer and autumn (Zhou et al., 2014; Yuan et al.,
266	2018). The seasonal maximum NH_3 concentrations have also been reported during the
267	warmer seasons, corresponding to the peak emissions from agricultural activities and high
268	temperatures, while the low NH_3 concentrations observed in colder seasons may be
269	attributed to gas-to-particle conversion (Pan et al., 2018; Zheng et al., 2012). Such seasonal
270	variation in NOCs were also obtained in a model simulation, showing that the conversion of
271	NH ₃ into NOCs would result in a significantly higher reduction of gas-phase NH ₃ during
272	summer (67%) than winter (31%), due to the higher NH_3 and SOA concentrations present in
273	the summer (Zhu et al., 2018). Since NOCs have been commonly observed in air masses
274	affected by biomass burning (Desyaterik et al., 2013), more primary NOCs may also be
275	present during summer and autumn in the present study, due to the additional biomass
276	burning activities in these seasons (Chen et al., 2018; Zhang et al., 2013).
277	While the seasonal variations in NOCs can be adequately explained by the variations in

278 concentrations of oxidized organics and ammonium (Fig. 4), the hourly variations during 279 each season were not well explained, as indicated by the lower R^2 values (Table S2). The

~ ~ ~

280	correlation coefficients (\mathbb{R}^2) ranged from 0.24 to 0.57 for inter-seasonal variations, although
281	all regressions were found to be significant. As shown in Fig. 3, the seasonal dependence of
282	NOCs on oxidized organics and ammonium varies, despite the correlations between NOCs
283	and oxidized organics / ammonium being significant ($p < 0.01$) over different seasons.
284	During spring, NOCs exhibited a limited dependence on oxidized organics (Fig. 3a and 3b),
285	while during summer, the hourly detected number of NOCs showed a limited dependence
286	on ammonium (Fig. 3d). These findings were consistent with the PMF results, showing that
287	the ammonium factor explained ~80% of the predicted NOCs during spring, while the
288	oxidized organics factor dominantly contributed to the predicted NOCs during warmer
289	seasons (Fig. S9). A detailed discussion of this issue is provided in the SI.

290

291 3.3 Influence of RH and particle acidity

292 The importance of RH on NOC RPAs and peak ratios of NOCs and oxidized organics, 293 are shown in Fig. 6. While NOCs did not show a clear dependence on RH, the ratio of NOCs 294 to oxidized organics showed a clear increase with higher RH. This finding is consistent with 295 the observations reported by Xu et al. (2017), in which the N/C ratio significantly increased 296 as a function of RH in the atmosphere of Beijing. In addition, the diurnal variations of NOCs 297 with peaks values around 20:00 were also similar to those reported by Xu et al. (2017). These 298 findings imply that aqueous-phase processing likely plays an important role in the formation 299 of NOCs. Significant changes in RH, such as during the evaporation of water droplets, have 300 been reported to facilitate the formation of NOCs via NH₃/NH₄⁺ and SOA (Nguyen et al.,

301	2012). In addition, an increase in RH would improve the uptake of NH_3 and formation of
302	$\mathrm{NH}_{\!\scriptscriptstyle 4}^{\scriptscriptstyle +},$ which also contributes to the enhancement of NOCs. However, the relatively weak
303	correlation ($R^2 = 0.27$, $p < 0.01$) between the peak ratios and RH, reflect the complex
304	influence of RH on the formation of NOCs (Xu et al., 2017; Woo et al., 2013). It is noted
305	that the formation of NOCs from oxidized organics was not enhanced when RH conditions
306	were lower than 40%.
307	While particulate organics with a high N/C ratio were formed in the presence of
308	ammonium salts (Lee et al., 2013), the influence of particle acidity on the formation of NOCs
309	has not previously been thoroughly evaluated. We further analyzed the influence of particle
310	acidity on the formation of NOCs, with particle acidity represented by the relative acidity
311	ratio, defined as the sum of absolute average peak areas of nitrate (m/z -62) and sulfate (m/z
312	-97) divided by those of ammonium (m/z 18) (Denkenberger et al., 2007). Fig. 7 clearly
313	shows the dependence of NOCs on particle acidity. Similarly, ambient observations reported
314	from a forest site in Japan indicate that aerosol acidity likely plays an important role in the
315	formation of WSON via acid-catalyzed reactions in summer (Miyazaki et al., 2014).
316	Enhanced organic aerosol yields from gas-phase carbonyls in the acidic seed aerosol have
317	been attributed to the occurrence of acid-catalyzed reactions (Jang et al., 2002). Furthermore,
318	acidity could also play a significant role in the gas-to-particle partitioning of aldehydes
319	(Herrmann et al., 2015; Liggio et al., 2005; Gen et al., 2018; De Haan et al., 2018; Kroll et
320	al., 2005), although some studies have indicated that browning of some SOA occurs
321	independently within a pH range of 4–10 (Nguyen et al., 2012). Consistently higher relative

322	acidity was observed for the internally mixed ammonium and NOCs particles, as compared
323	to ammonium-containing particles without NOCs (Fig. S7). This finding was consistent with
324	the results discussed in section 3.1, indicating that particles containing a higher abundance
325	of ammonium may not facilitate the formation of NOCs. A previously reported modelled
326	simulation showed that after including the chemistry of SOA ageing with NH ₃ , an increase
327	in aerosol acidity would be expected due to the reduction in NH4, resulting in more SOA
328	generated from acid-catalyzed reactions (Zhu et al., 2018). Consequently, the relative acidity
329	ratio was also included in the multiple linear regression model applied in the present study,
330	as previously discussed. However, the inclusion of relative acidity did not improve the
331	degree of fit between the observed and modeled RPAs of NOCs. This suggests that the
332	selection of the RPAs of ammonium or the relative acidity ratio in regression analysis
333	resulted in similar outcomes for the formation of NOCs as the present study, due to the
334	overlap between these variables. Sulfate might also play a role in the enhancement of
335	formation kinetics for NOCs ($R^2 = 0.13$, $p < 0.01$), as previously demonstrated in laboratory
336	simulations showing that sulfate can enhance the partitioning of some carbonyls (Lee et al.,
337	2013).

338

339 **3.4 Atmospheric implications and limitation**

In this study we showed that in an urban megacity area, secondary NOCs were significantly contributed by the heterogeneous ageing of photochemical products with NH₃/NH⁺₄, providing valuable insight into SOA aging mechanisms. In particular, the effects

343	of NH_3/NH_4^+ on SOA or BrC formation remain relatively poorly understood. In the PRD
344	region, it has been shown that oxygenated organic aerosols (OOA) account for more than
345	40% the total organic mass (He et al., 2011), with high concentrations of available gaseous
346	carbonyls (Li et al., 2014). Therefore, it is expected that over half of all water soluble NOCs
347	in this region, might link to secondary processing (Yu et al., 2017). Furthermore, secondary
348	sources have been found to contribute significantly to NOCs related BrC in Nanjing, China
349	(Chen et al., 2018). The results presented herein also suggest that the production of NOCs
350	might be effectively estimated by their correlation with secondary oxidized organics and
351	ammonium. The effectiveness of correlation based estimations needs to be examined in other
352	regions before being generally applied in other environments. However, this approach may
353	provide valuable insights in investigations into NOCs using atmospheric observations. In
354	contrast, it has previously been reported that a positive correlation exists between WSON
355	and ammonium (Li et al., 2012), indicating similar anthropogenic sources. This divergence
356	could be mainly attributed to varying contributions of primary sources and secondary
357	processes to the observed NOCs. Possible future reductions in anthropogenic emissions of
358	ammonia may reduce particle NOCs. Understanding the complex interplay between
359	inorganic and organic nitrogen is an important part of assessing the global nitrogen cycling.
360	Moise et al. (2015) proposed that with high concentrations of reduced nitrogen
361	compounds, high photochemical activity and frequent changes in humidity, BrC formed via
362	$\rm NH_3/\rm NH_4^+$ and SOA may become a dominant contributor to aerosol absorption, specifically
363	in agricultural and forested areas. However, this study suggests that even in typical urban

364	areas, BrC formation via $\rm NH_3/\rm NH_4^+$ and SOA should be considered. In particular, SOA was
365	found to account for 44–71% of the organic mass in megacities across China (Huang et al.,
366	2014), with NH_3 concentrations in urban areas comparable with those from agricultural sites
367	and 2- or 3-fold those of forested areas in China (Pan et al., 2018). Additionally, the acidic
368	nature of particles in these regions would be also favorable for the formation of NOCs (Guo
369	et al., 2017; Jia et al., 2018).
370	Considering the formation of NOCs from the uptake of NH ₃ onto SOA particles, Zhu
371	et al. (2018) suggested that this mechanism could have a significant impact on the
372	atmospheric concentrations of NH_3/NH_4^+ and NO_3^- . However, the uptake of carbonyl onto
373	the ammonium-containing particles was not considered. As discussed above, 33% of the
374	modelled NOCs on average could be explained by the ammonium factor, with this effect
375	most pronounced during spring (Fig. 5 and Fig. S9). Such chemistry may also result in an
376	increase in aerosol acidity due to the reduction in NH_4^+ , resulting in the formation of more
377	SOA from acid-catalyzed reactions of gas-phase carbonyls (Jang et al., 2002). Given that
378	RH and particle acidity play an important role in the aqueous formation of SOA and uptake
379	of NH ₃ , such models should be developed to include these factors, in order to improve our
380	understanding of the impact of the discussed chemical mechanisms in atmospheric chemistry
381	and the global nitrogen cycle.
383	

382

383 5 Conclusions

384	This study investigated the processes contributing to the seasonal formation of NOCs,
385	involving ammonium and oxidized organics in urban Guangzhou, using single particle mass
386	spectrometry. This is the first study to provide direct field observation results to confirm that
387	the variation in NOCs correlated well and strongly enhanced internal mixing with secondary
388	oxidized organics. These findings highlight the possible formation pathway of NOCs
389	through ageing of secondary oxidized organics by NH_3/NH_4^+ in ambient urban environments.
390	A clear pattern of seasonal variation in NOCs was observed, with higher relative
391	contributions in summer and autumn as compared to spring and winter. This seasonal
392	variation was well predicted by multiple linear regression model analysis, using the relative
393	abundance of oxidized organics and ammonium as model inputs. More than 50% of NOCs
394	could be explained by the interaction between oxidized organics and ammonium. The
395	production of NOCs through such processes were facilitated by increased humidity and
396	higher particle acidity. These results extend our understanding of the mixing state and
397	atmospheric processing of particulate NOCs, as well as having important implications for
398	the accuracy of models predicting the formation, fate and impacts of NOCs in the atmosphere.
399	

400 Author contribution

GHZ and XHB designed the research (with input from WS, LL, ZYW, DHC, MJT, XMW
and GYS), analyzed the data, and wrote the manuscript. XFL, YZF and QHL conducted air
sampling work and laboratory experiments under the guidance of GHZ, XHB and XMW.
All authors contributed to the refinement of the submitted manuscript.

405

406 Acknowledgement

- 407 This work was supported by the National Nature Science Foundation of China (No.
- 408 41775124 and 41877307), the National Key Research and Development Program of China
- 409 (2017YFC0210104 and 2016YFC0202204) and the Science and Technology Project of
- 410 Guangzhou, China (No. 201803030032).

411 References 412 Aiona, P. K., Lee, H. J., Leslie, R., Lin, P., Laskin, A., Laskin, J., and Nizkorodov, S. A.: 413 Photochemistry of Products of the Aqueous Reaction of Methylglyoxal with Ammonium 414 Sulfate, Acs Earth Space Chem., 1, 522-532, doi:10.1021/acsearthspacechem.7b00075, 2017. 415 Altieri, K. E., Turpin, B. J., and Seitzinger, S. P.: Composition of Dissolved Organic 416 Nitrogen in Continental Precipitation Investigated by Ultra-High Resolution FT-ICR Mass 417 Spectrometry, Environ. Sci. Technol., 43, 6950-6955, doi:10.1021/es9007849, 2009. 418 Andreae, M. O., and Gelencser, A.: Black carbon or brown carbon? The nature of light-419 absorbing carbonaceous aerosols, Atmos. Chem. Phys., 6, 3131-3148, 2006. 420 Bones, D. L., Henricksen, D. K., Mang, S. A., Gonsior, M., Bateman, A. P., Nguyen, T. 421 B., Cooper, W. J., and Nizkorodov, S. A.: Appearance of strong absorbers and fluorophores in 422 limonene-O-3 secondary organic aerosol due to NH4+-mediated chemical aging over long time 423 scales, J. Geophys. Res.-Atmos., 115, D05203, doi:10.1029/2009jd012864, 2010. 424 Cape, J. N., Cornell, S. E., Jickells, T. D., and Nemitz, E.: Organic nitrogen in the 425 atmosphere — Where does it come from? A review of sources and methods, Atmos. Res., 102, 426 30-48, doi:10.1016/j.atmosres.2011.07.009, 2011. 427 Chen, Y., Ge, X., Chen, H., Xie, X., Chen, Y., Wang, J., Ye, Z., Bao, M., Zhang, Y., and 428 Chen, M.: Seasonal light absorption properties of water-soluble brown carbon in atmospheric 429 fine particles in Nanjing, China. Environ., Atmos. 430 doi:https://doi.org/10.1016/j.atmosenv.2018.06.002, 2018. 431 Chu, B. W., Zhang, X., Liu, Y. C., He, H., Sun, Y., Jiang, J. K., Li, J. H., and Hao, J. M.: 432 Synergetic formation of secondary inorganic and organic aerosol: effect of SO2 and NH3 on 433 particle formation and growth, Atmos. Chem. Phys., 16, 14219-14230, doi:10.5194/acp-16-434 14219-2016, 2016. 435 De Gouw, J., and Jimenez, J. L.: Organic Aerosols in the Earth's Atmosphere, Environ. 436 Sci. Technol., 43, 7614-7618, doi:10.1021/Es9006004, 2009. 437 De Haan, D. O., Hawkins, L. N., Kononenko, J. A., Turley, J. J., Corrigan, A. L., Tolbert,

438 M. A., and Jimenez, J. L.: Formation of Nitrogen-Containing Oligomers by Methylglyoxal and

- 439 Amines in Simulated Evaporating Cloud Droplets, Environ. Sci. Technol., 45, 984-991,
- 440 doi:10.1021/es102933x, 2011.
- 441 De Haan, D. O., Hawkins, L. N., Welsh, H. G., Pednekar, R., Casar, J. R., Pennington, E.
- 442 A., de Loera, A., Jimenez, N. G., Symons, M. A., Zauscher, M., Pajunoja, A., Caponi, L.,
- 443 Cazaunau, M., Formenti, P., Gratien, A., Pangui, E., and Doussin, J.-F.: Brown Carbon
- 444 Production in Ammonium- or Amine-Containing Aerosol Particles by Reactive Uptake of
- 445 Methylglyoxal and Photolytic Cloud Cycling, Environ. Sci. Technol., 51, 7458-7466,
- 446 doi:10.1021/acs.est.7b00159, 2017.

De Haan, D. O., Jimenez, N. G., de Loera, A., Cazaunau, M., Gratien, A., Pangui, E., and
Doussin, J.-F.: Methylglyoxal Uptake Coefficients on Aqueous Aerosol Surfaces, J. Phys.
Chem. A, 122, 4854-4860, doi:10.1021/acs.jpca.8b00533, 2018.

- Denkenberger, K. A., Moffet, R. C., Holecek, J. C., Rebotier, T. P., and Prather, K. A.:
 Real-time, single-particle measurements of oligomers in aged ambient aerosol particles,
 Environ. Sci. Technol., 41, 5439-5446, doi:10.1021/es0703291, 2007.
- Desyaterik, Y., Sun, Y., Shen, X., Lee, T., Wang, X., Wang, T., and Collett, J. L., Jr.:
 Speciation of "brown" carbon in cloud water impacted by agricultural biomass burning in
 eastern China, J. Geophys. Res.-Atmos., 118, 7389-7399, doi:10.1002/jgrd.50561, 2013.
- El-Sayed, M. M. H., Wang, Y. Q., and Hennigan, C. J.: Direct atmospheric evidence for
 the irreversible formation of aqueous secondary organic aerosol, Geophys. Res. Lett., 42, 55775586, doi:10.1002/2015gl064556, 2015.
- 459 Feng, Y., Ramanathan, V., and Kotamarthi, V. R.: Brown carbon: a significant
 460 atmospheric absorber of solar radiation?, Atmos. Chem. Phys., 13, 8607-8621,
 461 doi:10.5194/acp-13-8607-2013, 2013.
- Fry, J. L., Draper, D. C., Barsanti, K. C., Smith, J. N., Ortega, J., Winkle, P. M., Lawler,
 M. J., Brown, S. S., Edwards, P. M., Cohen, R. C., and Lee, L.: Secondary Organic Aerosol
 Formation and Organic Nitrate Yield from NO3 Oxidation of Biogenic Hydrocarbons, Environ.
 Sci. Technol., 48, 11944-11953, doi:10.1021/es502204x, 2014.

466	Galloway, M. M., Chhabra, P. S., Chan, A. W. H., Surratt, J. D., Flagan, R. C., Seinfeld,
467	J. H., and Keutsch, F. N.: Glyoxal uptake on ammonium sulphate seed aerosol: reaction
468	products and reversibility of uptake under dark and irradiated conditions, Atmos. Chem. Phys.,
469	9, 3331-3345, doi:10.5194/acp-9-3331-2009, 2009.
470	Gen, M., Huang, D. D., and Chan, C. K.: Reactive Uptake of Glyoxal by Ammonium-
471	Containing Salt Particles as a Function of Relative Humidity, Environ. Sci. Technol., 52, 6903-
472	6911, doi:10.1021/acs.est.8b00606, 2018.
473	Guo, H., Weber, R. J., and Nenes, A.: High levels of ammonia do not raise fine particle
474	pH sufficiently to yield nitrogen oxide-dominated sulfate production, Sci. Rep., 7, 12109,
475	doi:10.1038/s41598-017-11704-0, 2017.
476	Hawkins, L. N., Lemire, A. N., Galloway, M. M., Corrigan, A. L., Turley, J. J., Espelien,
477	B. M., and De Haan, D. O.: Maillard Chemistry in Clouds and Aqueous Aerosol As a Source
478	of Atmospheric Humic-Like Substances, Environ. Sci. Technol., 50, 7443-7452,
479	doi:10.1021/acs.est.6b00909, 2016.
480	He, L. Y., Huang, X. F., Xue, L., Hu, M., Lin, Y., Zheng, J., Zhang, R. Y., and Zhang, Y.
481	H.: Submicron aerosol analysis and organic source apportionment in an urban atmosphere in
482	Pearl River Delta of China using high-resolution aerosol mass spectrometry, J. Geophys. Res
483	Atmos., 116, 1-15, doi:10.1029/2010jd014566, 2011.
484	Healy, R. M., Sciare, J., Poulain, L., Crippa, M., Wiedensohler, A., Prevot, A. S. H.,
485	Baltensperger, U., Sarda-Esteve, R., McGuire, M. L., Jeong, C. H., McGillicuddy, E., O'Connor,
486	I. P., Sodeau, J. R., Evans, G. J., and Wenger, J. C.: Quantitative determination of carbonaceous
487	particle mixing state in Paris using single-particle mass spectrometer and aerosol mass
488	spectrometer measurements, Atmos. Chem. Phys., 13, 9479-9496, doi:10.5194/acp-13-9479-
489	2013, 2013.
490	Herrmann, H., Schaefer, T., Tilgner, A., Styler, S. A., Weller, C., Teich, M., and Otto, T.:

- 491 Tropospheric Aqueous-Phase Chemistry: Kinetics, Mechanisms, and Its Coupling to a
- 492 Changing Gas Phase, Chem. Rev., 115, 4259-4334, doi:10.1021/cr500447k, 2015.

493	Ho, K. F., Ho, S. S. H., Lee, S. C., Kawamura, K., Zou, S. C., Cao, J. J., and Xu, H. M.:
494	Summer and winter variations of dicarboxylic acids, fatty acids and benzoic acid in PM2.5 in
495	Pearl Delta River Region, China, Atmos. Chem. Phys., 11, 2197-2208, doi:10.5194/acp-11-
496	2197-2011, 2011.
497	Ho, K. F., Ho, S. S. H., Huang, R. J., Liu, S. X., Cao, J. J., Zhang, T., Chuang, H. C., Chan,
498	C. S., Hu, D., and Tian, L. W.: Characteristics of water-soluble organic nitrogen in fine
499	particulate matter in the continental area of China, Atmos. Environ., 106, 252-261,
500	doi:10.1016/j.atmosenv.2015.02.010, 2015.
501	Hu, M., Wu, Z., Slanina, J., Lin, P., Liu, S., and Zeng, L.: Acidic gases, ammonia and
502	water-soluble ions in PM2.5 at a coastal site in the Pearl River Delta, China, Atmos. Environ.,
503	42, 6310-6320, 2008.
504	Huang, M., Xu, J., Cai, S., Liu, X., Zhao, W., Hu, C., Gu, X., Fang, L., and Zhang, W.:
505	Characterization of brown carbon constituents of benzene secondary organic aerosol aged with
506	ammonia, J. Atmos. Chem., 75, 205-218, doi:10.1007/s10874-017-9372-x, 2017.
507	Huang, R. J., Zhang, Y., Bozzetti, C., Ho, K. F., Cao, J. J., Han, Y., Daellenbach, K. R.,
508	Slowik, J. G., Platt, S. M., Canonaco, F., Zotter, P., Wolf, R., Pieber, S. M., Bruns, E. A., Crippa,
509	M., Ciarelli, G., Piazzalunga, A., Schwikowski, M., Abbaszade, G., Schnelle-Kreis, J.,
510	Zimmermann, R., An, Z., Szidat, S., Baltensperger, U., El Haddad, I., and Prevot, A. S.: High
511	secondary aerosol contribution to particulate pollution during haze events in China, Nature, 514,
512	218-222, doi:10.1038/nature13774, 2014.
513	Jang, M., Czoschke, N. M., Lee, S., and Kamens, R. M.: Heterogeneous atmospheric
514	aerosol production by acid-catalyzed particle-phase reactions, Science, 298, 814-817, 2002.
515	Jeong, C. H., McGuire, M. L., Godri, K. J., Slowik, J. G., Rehbein, P. J. G., and Evans, G.
516	J.: Quantification of aerosol chemical composition using continuous single particle
517	measurements, Atmos. Chem. Phys., 11, 7027-7044, doi:10.5194/acp-11-7027-2011, 2011.
518	Jia, S. G., Sarkar, S., Zhang, Q., Wang, X. M., Wu, L. L., Chen, W. H., Huang, M. J.,
519	Zhou, S. Z., Zhang, J. P., Yuan, L., and Yang, L. M.: Characterization of diurnal variations of

- 520 PM2.5 acidity using an open thermodynamic system: A case study of Guangzhou, China,
- 521 Chemosphere, 202, 677-685, doi:10.1016/j.chemosphere.2018.03.127, 2018.
- 522 Kampf, C. J., Filippi, A., Zuth, C., Hoffmann, T., and Opatz, T.: Secondary brown carbon
- 523 formation via the dicarbonyl imine pathway: nitrogen heterocycle formation and synergistic
- 524 effects, Phys. Chem. Chem. Phys., 18, 18353-18364, doi:10.1039/c6cp03029g, 2016.
- 525 Kanakidou, M., Seinfeld, J. H., Pandis, S. N., Barnes, I., Dentener, F. J., Facchini, M. C.,
- 526 Van Dingenen, R., Ervens, B., Nenes, A., Nielsen, C. J., Swietlicki, E., Putaud, J. P., Balkanski,
- 527 Y., Fuzzi, S., Horth, J., Moortgat, G. K., Winterhalter, R., Myhre, C. E. L., Tsigaridis, K.,
- 528 Vignati, E., Stephanou, E. G., and Wilson, J.: Organic aerosol and global climate modelling: a
- 529 review, Atmos. Chem. Phys., 5, 1053-1123, 2005.
- 530 Kroll, J. H., Ng, N. L., Murphy, S. M., Varutbangkul, V., Flagan, R. C., and Seinfeld, J.
- 531 H.: Chamber studies of secondary organic aerosol growth by reactive uptake of simple carbonyl

532 compounds, J. Geophys. Res.-Atmos., 110, doi:10.1029/2005JD006004, 2005.

- Laskin, A., Smith, J. S., and Laskin, J.: Molecular Characterization of NitrogenContaining Organic Compounds in Biomass Burning Aerosols Using High-Resolution Mass
 Spectrometry, Environ. Sci. Technol., 43, 3764-3771, doi:10.1021/es803456n, 2009.
- 536 Laskin, A., Laskin, J., and Nizkorodov, S. A.: Chemistry of Atmospheric Brown Carbon,
- 537 Chem. Rev., 115, 4335-4382, doi:10.1021/cr5006167, 2015.
- Lee, A. K. Y., Zhao, R., Li, R., Liggio, J., Li, S. M., and Abbatt, J. P. D.: Formation of
 Light Absorbing Organo-Nitrogen Species from Evaporation of Droplets Containing Glyoxal
 and Ammonium Sulfate, Environ. Sci. Technol., 47, 12819-12826, doi:10.1021/es402687w,
 2013.
- Lee, S. H., Murphy, D. M., Thomson, D. S., and Middlebrook, A. M.: Nitrate and oxidized
 organic ions in single particle mass spectra during the 1999 Atlanta Supersite Project, J.
 Geophys. Res., 108, 8417, doi:10.1029/2001jd001455, 2003.
- 545 Lehtipalo, K., Yan, C., Dada, L., Bianchi, F., Xiao, M., Wagner, R., Stolzenburg, D.,
- 546 Ahonen, L. R., Amorim, A., Baccarini, A., Bauer, P. S., Baumgartner, B., Bergen, A.,
- 547 Bernhammer, A.-K., Breitenlechner, M., Brilke, S., Buchholz, A., Mazon, S. B., Chen, D., Chen,

- 548 X., Dias, A., Dommen, J., Draper, D. C., Duplissy, J., Ehn, M., Finkenzeller, H., Fischer, L.,
- 549 Frege, C., Fuchs, C., Garmash, O., Gordon, H., Hakala, J., He, X., Heikkinen, L., Heinritzi, M.,
- 550 Helm, J. C., Hofbauer, V., Hoyle, C. R., Jokinen, T., Kangasluoma, J., Kerminen, V.-M., Kim,
- 551 C., Kirkby, J., Kontkanen, J., Kürten, A., Lawler, M. J., Mai, H., Mathot, S., Mauldin, R. L.,
- 552 Molteni, U., Nichman, L., Nie, W., Nieminen, T., Ojdanic, A., Onnela, A., Passananti, M.,
- 553 Petäjä, T., Piel, F., Pospisilova, V., Quéléver, L. L. J., Rissanen, M. P., Rose, C., Sarnela, N.,
- 554 Schallhart, S., Schuchmann, S., Sengupta, K., Simon, M., Sipilä, M., Tauber, C., Tomé, A.,
- 555 Tröstl, J., Väisänen, O., Vogel, A. L., Volkamer, R., Wagner, A. C., Wang, M., Weitz, L.,
- 556 Wimmer, D., Ye, P., Ylisirniö, A., Zha, Q., Carslaw, K. S., Curtius, J., Donahue, N. M., Flagan,
- 557 R. C., Hansel, A., Riipinen, I., Virtanen, A., Winkler, P. M., Baltensperger, U., Kulmala, M.,
- and Worsnop, D. R.: Multicomponent new particle formation from sulfuric acid, ammonia, and
- biogenic vapors, Sci. Adv., 4, eaau5363, doi:10.1126/sciadv.aau5363, 2018.
- Li, J., Fang, Y. T., Yoh, M., Wang, X. M., Wu, Z. Y., Kuang, Y. W., and Wen, D. Z.:
 Organic nitrogen deposition in precipitation in metropolitan Guangzhou city of southern China,
 Atmos. Res., 113, 57-67, doi:10.1016/j.atmosres.2012.04.019, 2012.
- 563 Li, L., Huang, Z. X., Dong, J. G., Li, M., Gao, W., Nian, H. Q., Fu, Z., Zhang, G. H., Bi,

564 X. H., Cheng, P., and Zhou, Z.: Real time bipolar time-of-flight mass spectrometer for analyzing

single aerosol particles, Intl. J. Mass. Spectrom., 303, 118-124, doi:10.1016/j.ijms.2011.01.017,
2011.

- Li, X., Rohrer, F., Brauers, T., Hofzumahaus, A., Lu, K., Shao, M., Zhang, Y. H., and
 Wahner, A.: Modeling of HCHO and CHOCHO at a semi-rural site in southern China during
 the PRIDE-PRD2006 campaign, Atmos. Chem. Phys., 14, 12291-12305, doi:10.5194/acp-14-
- 570 12291-2014, 2014.
- 571 Li, Z. J., Nizkorodov, S. A., Chen, H., Lu, X. H., Yang, X., and Chen, J. M.: Nitrogen-
- 572 containing secondary organic aerosol formation by acrolein reaction with ammonia/ammonium,
- 573 Atmos. Chem. Phys., 19, 1343-1356, doi:10.5194/acp-19-1343-2019, 2019.
- 574 Liggio, J., Li, S. M., and Mclaren, R.: Reactive uptake of glyoxal by particulate matter, J.
- 575 Geophys. Res.-Atmos., 110, doi:10.1029/2004jd005113, 2005.

- 576 Lin, P., Aiona, P. K., Li, Y., Shiraiwa, M., Laskin, J., Nizkorodov, S. A., and Laskin, A.:
- 577 Molecular Characterization of Brown Carbon in Biomass Burning Aerosol Particles, Environ.
- 578 Sci. Technol., 50, 11815-11824, doi:10.1021/acs.est.6603024, 2016.
- 579 Liu, Y., Liggio, J., Staebler, R., and Li, S. M.: Reactive uptake of ammonia to secondary
- 580 organic aerosols: kinetics of organonitrogen formation, Atmos. Chem. Phys., 15, 13569-13584,
- 581 doi:10.5194/acp-15-13569-2015, 2015.
- 582 Mace, K. A., Kubilay, N., and Duce, R. A.: Organic nitrogen in rain and aerosol in the
- eastern Mediterranean atmosphere: An association with atmospheric dust, J. Geophys. Res.Atmos., 108, doi:10.1029/2002jd002997, 2003.
- Mang, S. A., Henricksen, D. K., Bateman, A. P., Andersen, M. P. S., Blake, D. R., and
 Nizkorodov, S. A.: Contribution of Carbonyl Photochemistry to Aging of Atmospheric
 Secondary Organic Aerosol, J. Phys. Chem. A, 112, 8337-8344, doi:10.1021/jp804376c, 2008.
- Miyazaki, Y., Fu, P. Q., Ono, K., Tachibana, E., and Kawamura, K.: Seasonal cycles of
 water-soluble organic nitrogen aerosols in a deciduous broadleaf forest in northern Japan, J.
 Geophys. Res.-Atmos., 119, 1440-1454, doi:10.1002/2013JD020713, 2014.
- Mohr, C., Lopez-Hilfiker, F. D., Zotter, P., Prévôt, A. S. H., Xu, L., Ng, N. L., Herndon,
 S. C., Williams, L. R., Franklin, J. P., Zahniser, M. S., Worsnop, D. R., Knighton, W. B., Aiken,
 A. C., Gorkowski, K. J., Dubey, M. K., Allan, J. D., and Thornton, J. A.: Contribution of
 Nitrated Phenols to Wood Burning Brown Carbon Light Absorption in Detling, United
 Kingdom during Winter Time, Environ. Sci. Technol., 47, 6316-6324, doi:10.1021/es400683v,
 2013.
- Moise, T., Flores, J. M., and Rudich, Y.: Optical Properties of Secondary Organic Aerosols
 and Their Changes by Chemical Processes, Chem. Rev., 115, 4400-4439,
 doi:10.1021/cr5005259, 2015.
- Neff, J. C., Holland, E. A., Dentener, F. J., McDowell, W. H., and Russell, K. M.: The
 origin, composition and rates of organic nitrogen deposition: A missing piece of the nitrogen
 cycle?, Biogeochemistry, 57, 99-136, 2002.

603

604 Nizkorodov, S. A.: Formation of nitrogen- and sulfur-containing light-absorbing compounds 605 accelerated by evaporation of water from secondary organic aerosols, J. Geophys. Res.-Atmos., 606 117, D01207, doi:10.1029/2011jd016944, 2012. 607 Norris, G., Vedantham, R., Wade, K., Zahn, P., Brown, S., Paatero, P., Eberly, S., and 608 Foley, C. (2009), Guidance document for PMF applications with the Multilinear Engine, edited, 609 Prepared for the U.S. Environmental Protection Agency, Research Triangle Park, NC. 610 Noziere, B., Dziedzic, P., and Cordova, A.: Products and Kinetics of the Liquid-Phase 611 Reaction of Glyoxal Catalyzed by Ammonium Ions (NH4+), J. Phys. Chem. A, 113, 231-237, 612 doi:10.1021/jp8078293, 2009. 613 Noziere, B., Kaberer, M., Claeys, M., Allan, J., D'Anna, B., Decesari, S., Finessi, E., 614 Glasius, M., Grgic, I., Hamilton, J. F., Hoffmann, T., Iinuma, Y., Jaoui, M., Kahno, A., Kampf, 615 C. J., Kourtchev, I., Maenhaut, W., Marsden, N., Saarikoski, S., Schnelle-Kreis, J., Surratt, J. 616 D., Szidat, S., Szmigielski, R., and Wisthaler, A.: The Molecular Identification of Organic 617 Compounds in the Atmosphere: State of the Art and Challenges, Chem. Rev., 115, 3919-3983, 618 doi:10.1021/cr5003485, 2015. 619 Pagels, J., Dutcher, D. D., Stolzenburg, M. R., McMurry, P. H., Galli, M. E., and Gross, 620 D. S.: Fine-particle emissions from solid biofuel combustion studied with single-particle mass 621 spectrometry: Identification of markers for organics, soot, and ash components, J. Geophys. 622 Res.-Atmos., 118, 859-870, doi:10.1029/2012jd018389, 2013. 623 Pan, Y. P., Tian, S. L., Zhao, Y. H., Zhang, L., Zhu, X. Y., Gao, J., Huang, W., Zhou, Y. 624 B., Song, Y., Zhang, Q., and Wang, Y. S.: Identifying Ammonia Hotspots in China Using a 625 National Observation Network, Environ. Sci. Technol., 52, 3926-3934. 626 doi:10.1021/acs.est.7b05235, 2018. 627 Paulot, F., Wunch, D., Crounse, J. D., Toon, G. C., Millet, D. B., DeCarlo, P. F.,

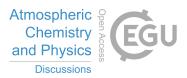
Nguyen, T. B., Lee, P. B., Updyke, K. M., Bones, D. L., Laskin, J., Laskin, A., and

- 628 Vigouroux, C., Deutscher, N. M., González Abad, G., Notholt, J., Warneke, T., Hannigan, J.
- 629 W., Warneke, C., de Gouw, J. A., Dunlea, E. J., De Mazière, M., Griffith, D. W. T., Bernath,
- 630 P., Jimenez, J. L., and Wennberg, P. O.: Importance of secondary sources in the atmospheric

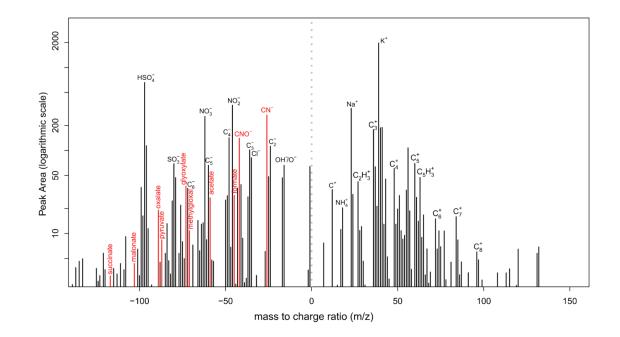
- budgets of formic and acetic acids, Atmos. Chem. Phys., 11, 1989-2013, doi:10.5194/acp-11-
- 632 1989-2011, 2011.
- 633 Qin, X. Y., Bhave, P. V., and Prather, K. A.: Comparison of two methods for obtaining
- 634 quantitative mass concentrations from aerosol time-of-flight mass spectrometry measurements,
- 635 Anal. Chem., 78, 6169-6178, doi:10.1021/ac060395q, 2006.
- 636 Rastogi, N., Zhang, X., Edgerton, E. S., Ingall, E., and Weber, R. J.: Filterable water-
- 637 soluble organic nitrogen in fine particles over the southeastern USA during summer, Atmos.
- 638 Environ., 45, 6040-6047, doi:10.1016/j.atmosenv.2011.07.045, 2011.
- 639 Sareen, N., Schwier, A. N., Shapiro, E. L., Mitroo, D., and McNeill, V. F.: Secondary
- organic material formed by methylglyoxal in aqueous aerosol mimics, Atmos. Chem. Phys., 10,
- 641 997-1016, doi:10.5194/acp-10-997-2010, 2010.
- 642 Shapiro, E. L., Szprengiel, J., Sareen, N., Jen, C. N., Giordano, M. R., and McNeill, V. F.:
- 643 Light-absorbing secondary organic material formed by glyoxal in aqueous aerosol mimics,
- 644 Atmos. Chem. Phys., 9, 2289-2300, 2009.
- Shi, J., Gao, H., Qi, J., Zhang, J., and Yao, X.: Sources, compositions, and distributions of
 water-soluble organic nitrogen in aerosols over the China Sea, J. Geophys. Res.-Atmos., 115,
- 647 doi:10.1029/2009jd013238, 2010.
- 648 Shrivastava, M., Cappa, C. D., Fan, J. W., Goldstein, A. H., Guenther, A. B., Jimenez, J.
- L., Kuang, C., Laskin, A., Martin, S. T., Ng, N. L., Petaja, T., Pierce, J. R., Rasch, P. J., Roldin,
- 650 P., Seinfeld, J. H., Shilling, J., Smith, J. N., Thornton, J. A., Volkamer, R., Wang, J., Worsnop,
- D. R., Zaveri, R. A., Zelenyuk, A., and Zhang, Q.: Recent advances in understanding secondary
- 652 organic aerosol: Implications for global climate forcing, Rev. Geophys., 55, 509-559,
- 653 doi:10.1002/2016RG000540, 2017.
- Silva, P. J., and Prather, K. A.: Interpretation of mass spectra from organic compounds in
 aerosol time-of-flight mass spectrometry, Anal. Chem., 72, 3553-3562, 2000.
- 656 Stefenelli, G., Pospisilova, V., Lopez-Hilfiker, F. D., Daellenbach, K. R., Hüglin, C., Tong,
- 457 Y., Baltensperger, U., Prevot, A. S. H., and Slowik, J. G.: Organic aerosol source apportionment
- 658 in Zurich using extractive electrospray ionization time-of-flight mass spectrometry (EESI-TOF):

- 659 Part I, biogenic influences and day/night chemistry in summer, Atmos. Chem. Phys. Discuss.,
- 660 2019, 1-36, doi:10.5194/acp-2019-361, 2019.
- 661 Sullivan, R. C., and Prather, K. A.: Investigations of the diurnal cycle and mixing state of
- oxalic acid in individual particles in Asian aerosol outflow, Environ. Sci. Technol., 41, 8062-8069, 2007.
- Sun, J. Z., Zhi, G. R., Hitzenberger, R., Chen, Y. J., Tian, C. G., Zhang, Y. Y., Feng, Y.
- 665 L., Cheng, M. M., Zhang, Y. Z., Cai, J., Chen, F., Qiu, Y., Jiang, Z., Li, J., Zhang, G., and Mo,
- Y.: Emission factors and light absorption properties of brown carbon from household coal
 combustion in China, Atmos. Chem. Phys., 17, 4769-4780, doi:10.5194/acp-17-4769-2017,
- 668 2017.
- Sun, Y. L., Zhang, Q., Schwab, J. J., Demerjian, K. L., Chen, W. N., Bae, M. S., Hung, H.
 M., Hogrefe, O., Frank, B., Rattigan, O. V., and Lin, Y. C.: Characterization of the sources and
 processes of organic and inorganic aerosols in New York city with a high-resolution time-offlight aerosol mass apectrometer, Atmos. Chem. Phys., 11, 1581-1602, doi:10.5194/acp-111581-2011, 2011.
- Updyke, K. M., Nguyen, T. B., and Nizkorodov, S. A.: Formation of brown carbon via
 reactions of ammonia with secondary organic aerosols from biogenic and anthropogenic
 precursors, Atmos. Environ., 63, 22-31, doi:10.1016/j.atmosenv.2012.09.012, 2012.
- Wang, X. F., Gao, S., Yang, X., Chen, H., Chen, J. M., Zhuang, G. S., Surratt, J. D., Chan,
- 678 M. N., and Seinfeld, J. H.: Evidence for High Molecular Weight Nitrogen-Containing Organic
- 679 Salts in Urban Aerosols, Environ. Sci. Technol., 44, 4441-4446, 2010.
- 680 Wang, X. F., Wang, H. L., Jing, H., Wang, W. N., Cui, W. D., Williams, B. J., and Biswas,
- 681 P.: Formation of Nitrogen-Containing Organic Aerosol during Combustion of High-Sulfur-
- 682 Content Coal, Energ. Fuel., 31, 14161-14168, doi:10.1021/acs.energyfuels.7b02273, 2017.
- 683 Woo, J. L., Kim, D. D., Schwier, A. N., Li, R. Z., and McNeill, V. F.: Aqueous aerosol
- 684 SOA formation: impact on aerosol physical properties, Faraday Discuss., 165, 357-367,
- 685 doi:10.1039/c3fd00032j, 2013.

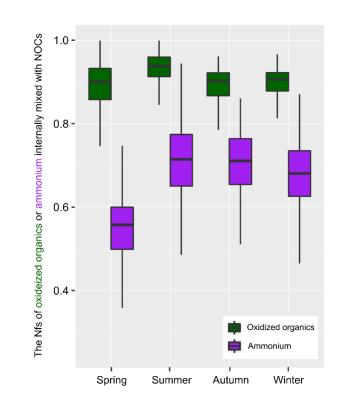
686	Xu, W. Q., Sun, Y. L., Wang, Q. Q., Du, W., Zhao, J., Ge, X. L., Han, T. T., Zhang, Y. J.,
687	Zhou, W., Li, J., Fu, P. Q., Wang, Z. F., and Worsnop, D. R.: Seasonal Characterization of
688	Organic Nitrogen in Atmospheric Aerosols Using High Resolution Aerosol Mass Spectrometry
689	in Beijing, China, Acs Earth Space Chem., 1, 673-682,
690	doi:10.1021/acsearthspacechem.7b00106, 2017.
691	Yan, J., Wang, X., Gong, P., Wang, C., and Cong, Z.: Review of brown carbon aerosols:
692	Recent progress and perspectives, Sci. Total. Environ., 634, 1475-1485,
693	doi:https://doi.org/10.1016/j.scitotenv.2018.04.083, 2018.
694	Yu, X., Yu, Q. Q., Zhu, M., Tang, M. J., Li, S., Yang, W. Q., Zhang, Y. L., Deng, W., Li,
695	G. H., Yu, Y. G., Huang, Z. H., Song, W., Ding, X., Hu, Q. H., Li, J., Bi, X. H., and Wang, X.
696	M.: Water Soluble Organic Nitrogen (WSON) in Ambient Fine Particles Over a Megacity in
697	South China: Spatiotemporal Variations and Source Apportionment, J. Geophys. ResAtmos.,
698	122, 13045-13060, doi:10.1002/2017JD027327, 2017.
699	Yuan, B., Liggio, J., Wentzell, J., Li, S. M., Stark, H., Roberts, J. M., Gilman, J., Lerner,
700	B., Warneke, C., Li, R., Leithead, A., Osthoff, H. D., Wild, R., Brown, S. S., and de Gouw, J.
701	A.: Secondary formation of nitrated phenols: insights from observations during the Uintah
702	BasinWinter Ozone Study (UBWOS) 2014, Atmos. Chem. Phys., 16, 2139-2153,
703	doi:10.5194/acp-16-2139-2016, 2016.
704	Yuan, Q., Lai, S., Song, J., Ding, X., Zheng, L., Wang, X., Zhao, Y., Zheng, J., Yue, D.,
705	Zhong, L., Niu, X., and Zhang, Y.: Seasonal cycles of secondary organic aerosol tracers in rural
706	Guangzhou, Southern China: The importance of atmospheric oxidants, Environ. Pollut., 240,
707	884-893, doi:10.1016/j.envpol.2018.05.009, 2018.
708	Zauscher, M. D., Wang, Y., Moore, M. J. K., Gaston, C. J., and Prather, K. A.: Air Quality
709	Impact and Physicochemical Aging of Biomass Burning Aerosols during the 2007 San Diego
710	Wildfires, Environ. Sci. Technol., 47, 7633-7643, doi:10.1021/es4004137, 2013.
711	Zawadowicz, M. A., Froyd, K. D., Murphy, D. M., and Cziczo, D. J.: Improved
712	identification of primary biological aerosol particles using single-particle mass spectrometry,
713	Atmos. Chem. Phys., 17, 7193-7212, doi:10.5194/acp-17-7193-2017, 2017.


- 714 Zhang, G., Lin, Q., Peng, L., Yang, Y., Jiang, F., Liu, F., Song, W., Chen, D., Cai, Z., Bi,
- 715 X., Miller, M., Tang, M., Huang, W., Wang, X., Peng, P., and Sheng, G.: Oxalate Formation
- 716 Enhanced by Fe-Containing Particles and Environmental Implications, Environ. Sci. Technol.,
- 717 53, 1269-1277, doi:10.1021/acs.est.8b05280, 2019.
- 718 Zhang, G. H., Bi, X. H., He, J. J., Chen, D. H., Chan, L. Y., Xie, G. W., Wang, X. M.,
- 719 Sheng, G. Y., Fu, J. M., and Zhou, Z.: Variation of secondary coatings associated with
- 720 elemental carbon by single particle analysis, Atmos. Environ., 92, 162-170,
- 721 doi:10.1016/j.atmosenv.2014.04.018, 2014.
- 722 Zhang, G. H., Lin, Q. H., Peng, L., Yang, Y. X., Fu, Y. Z., Bi, X. H., Li, M., Chen, D. H.,
- 723 Chen, J. X., Cai, Z., Wang, X. M., Peng, P. A., Sheng, G. Y., and Zhou, Z.: Insight into the in-
- cloud formation of oxalate based on in situ measurement by single particle mass spectrometry,
- 725 Atmos. Chem. Phys., 17, 13891-13901, doi:10.5194/acp-17-13891-2017, 2017.
- Zhang, Q., Duan, F., He, K., Ma, Y., Li, H., Kimoto, T., and Zheng, A.: Organic nitrogen
 in PM2.5 in Beijing, Frontiers of Environmental Science & Engineering, 9, 1004-1014,
 doi:10.1007/s11783-015-0799-5, 2015.
- Zhang, Y. S., Shao, M., Lin, Y., Luan, S. J., Mao, N., Chen, W. T., and Wang, M.:
 Emission inventory of carbonaceous pollutants from biomass burning in the Pearl River Delta
 Region, China, Atmos. Environ., 76, 189-199, doi:10.1016/j.atmosenv.2012.05.055, 2013.
- Zhao, R., Lee, A. K. Y., and Abbatt, J. P. D.: Investigation of Aqueous-Phase
 Photooxidation of Glyoxal and Methylglyoxal by Aerosol Chemical Ionization Mass
 Spectrometry: Observation of Hydroxyhydroperoxide Formation, J. Phys. Chem. A, 116, 62536263, doi:10.1021/jp211528d, 2012.
- Zhao, R., Lee, A. K. Y., Huang, L., Li, X., Yang, F., and Abbatt, J. P. D.: Photochemical
 processing of aqueous atmospheric brown carbon, Atmos. Chem. Phys., 15, 6087-6100,
 doi:10.5194/acp-15-6087-2015, 2015.
- Zheng, J. Y., Yin, S. S., Kang, D. W., Che, W. W., and Zhong, L. J.: Development and
 uncertainty analysis of a high-resolution NH3 emissions inventory and its implications with

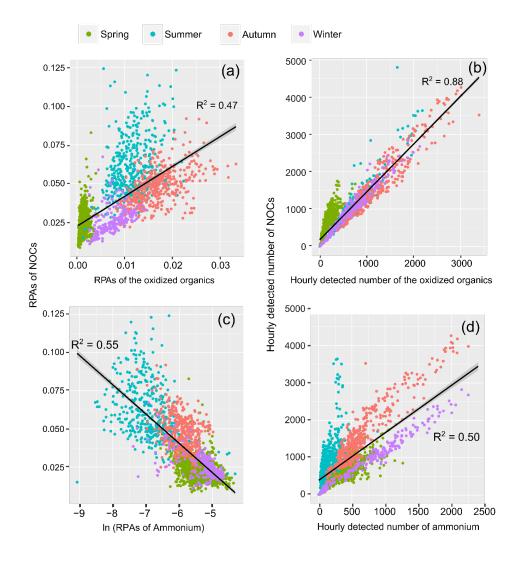
- 741 precipitation over the Pearl River Delta region, China, Atmos. Chem. Phys., 12, 7041-7058,
- 742 doi:10.5194/acp-12-7041-2012, 2012.
- 743 Zhou, S. Z., Wang, T., Wang, Z., Li, W. J., Xu, Z., Wang, X. F., Yuan, C., Poon, C. N.,
- Louie, P. K. K., Luk, C. W. Y., and Wang, W. X.: Photochemical evolution of organic aerosols
- observed in urban plumes from Hong Kong and the Pearl River Delta of China, Atmos. Environ.,
- 746 88, 219-229, doi:10.1016/j.atmosenv.2014.01.032, 2014.
- 747 Zhou, Y., Huang, X. H. H., Griffith, S. M., Li, M., Li, L., Zhou, Z., Wu, C., Meng, J. W.,
- 748 Chan, C. K., Louie, P. K. K., and Yu, J. Z.: A field measurement based scaling approach for
- 749 quantification of major ions, organic carbon, and elemental carbon using a single particle
- 750 aerosol mass spectrometer, Atmos. Environ., 143, 300-312,
- 751 doi:10.1016/j.atmosenv.2016.08.054, 2016.
- 752 Zhu, S. P., Horne, J. R., Montoya-Aguilera, J., Hinks, M. L., Nizkorodov, S. A., and
- 753 Dabdub, D.: Modeling reactive ammonia uptake by secondary organic aerosol in CMAQ:
- application to the continental US, Atmos. Chem. Phys., 18, 3641-3657, doi:10.5194/acp-18-
- 755 3641-2018, 2018.



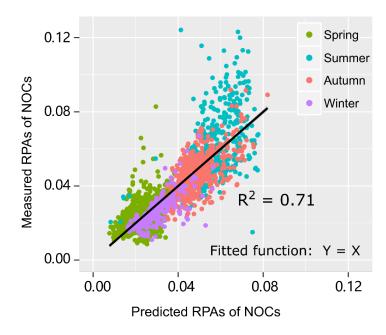
757	Figure captions
758	Figure 1. Representative mass spectrum for NOCs-containing particles. The ion
759	peaks corresponding to NOCs and oxidized organics are highlighted with red bars.
760	Figure 2. The variation in hourly mean Nfs of the oxidized organics and
761	ammonium that internally mixed with NOCs. Box and whisker plot shows lower,
762	median and upper lines, denoting the 25 th , 50 th and 75 th percentiles, respectively; the
763	lower and upper edges denote the 10 th and 90 th percentiles, respectively.
764	Figure 3. Correlation analysis of (a, c) the RPAs and (b, d) the number of
765	detected NOCs, with the oxidized organics and ammonium in different seasons.
766	Significant ($p < 0.01$) correlations were obtained for both the total observed data and
767	the seasonally separated data. RPA is defined as the fractional peak area of each m/z
768	relative to the sum of peak areas in the mass spectrum and is applied to represent the
769	relative amount of a species on a particle (Jeong et al., 2011; Healy et al., 2013).
770	Figure 4. Comparison between the measured and predicted RPAs for NOCs.
771	Figure 5. (left) PMF-resolved 3-factor source profiles (percentage of total species)
772	and (right) their diurnal variation (arbitrary unit).
773	Figure 6. The dependence of NOCs and the ratio of NOCs to the oxidized organics
774	on RH.
775	Figure 7. The dependence of NOCs on the relative acidity ratio. The relative
776	acidity ratios were logarithmically transformed to follow a normal distribution.




777

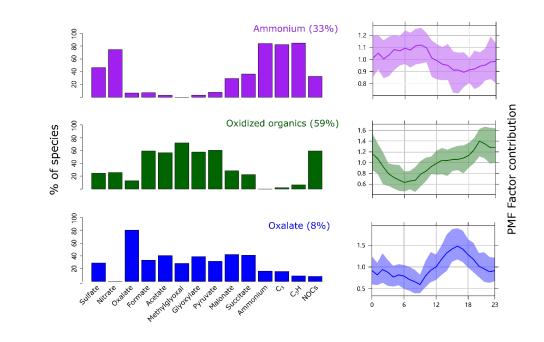




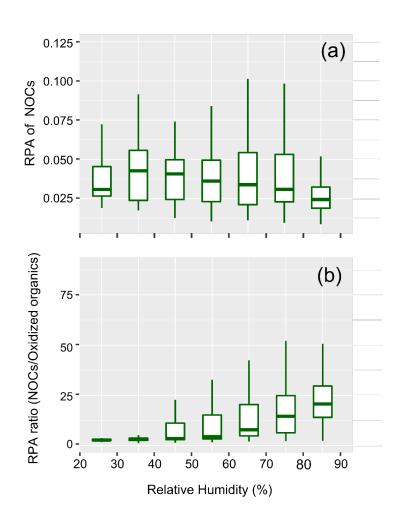


781

782 Fig. 3.



784 Fig. 4.



787 Fig. 5.

